

Case Study: The Gender Wage Gap has been Decreasing Over Time? Based on the slides of Prof. Pedro Raposo.

Miguel Salema

Católica-Lisbon SBE

April 12, 2024

Section 1

Introduction

Load the necessary packages and data:

```
# Run this only ONCE
#install.packages(haven)
#install.packages(tidyverse)
#install.packages(stargazer)
library(tidyverse) # core tidyverse packages
library(stargazer) # for the output tables
```

df <- read_csv("../data/qp_sample4.csv") #load the data</pre>

Name	Description
wage_lhr	Reports the real hourly wages in log terms. The hourly wage is measured in euros and it is the ratio between total regular and non-regular payroll (base wage, regular payments, non-regular benefits, and overtime payments) in the reference month and total hours of work (normal and overtime). It was deflated using the Consumer Price
	Index (with base-year 1986).
firm	Firm identifier.
year	Year information ranging between 1991 and 2017.
male	Dichotomous variable indicating whether the individual is a male.
age	Reports the person's age in years.
tenure	Reports the number of months an employee has worked for his firm.
educ	Reports 8 categories of education ranging from no education to having PhD.
job_title sector	Information is compatible through the all period. Reports more than 30000 categories of occupations. Reports 31 categories of industries. Information is compatible through the all period.

Lets see how the data looks like:

head(df) # see the first rows										
##	#	A tibb	ble: 6 s	r 9						
##		y ear	firm	wage_lhr	male	age	tenure	educ	job_title	sector
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	$<\!\!dbl\!>$	$<\!\!dbl\!>$	<dbl></dbl>	$<\!\!dbl\!>$	<dbl></dbl>	<dbl></dbl>
##	1	1999	470756	0.631	1	45	180	2	22334	13
##	2	2015	681779	0.481	0	20	6	5	64894	22
##	3	2004	213629	-0.0606	0	30	101	2	70452	14
##	4	2013	744477	-0.0816	1	28	24	4	113072	21
##	5	2012	439219	0.579	1	33	153	5	139534	15
##	6	2009	559628	0.135	0	34	93	4	102792	28

View(df) # this will open df in a separate window

Statistic	N	Mean	St. Dev.	Min	Max
year	4,742,129	2,005.1	7.6	1,991	2,017
firm	4,742,129	459,438.0	232,080.0	1	1,064,886
wage_lhr	4,742,129	0.4	0.6	-0.9	7.5
male	4,742,129	0.6	0.5	0	1
age	4,742,129	38.0	10.9	18	64
tenure	4,742,129	99.8	103.8	0	600
educ	4,742,129	3.8	1.6	0	7
job_title	4,742,129	81,124.1	40,628.2	1	163,876
sector	4,742,129	19.1	6.9	3	31

Calculate the mean wage difference between male and female:

```
# group_by interacts with summarise
# so, mean() will be calculated for both men and women
df %>%
group_by(male) %>% # group by the gender variable
summarise(average_wage = mean(wage_lhr)) # apply the mean
## # A tibble: 2 x 2
## male average_wage
## <dbl> <dbl>
## 1 0 0.293
## 2 1 0.526
```

How do we interpret these log differences?

```
exp(0.5261582 - 0.2934248) - 1
## [1] 0.262045
```

Variance-Covariance Matrix

Code for the variance-covariance plot:

```
library(reshape2)
df %>%
  select(wage lhr, # select what variables to keep
         male.
         age,
         educ,
         tenure) %>%
  cov() %>% # This is the line that computes the matrix
 round(digits = 2) %>% # round the numbers
 melt() %>% # the rest of the code is for the plot
  as tibble() %>%
  ggplot(aes(x=Var1, y=Var2, fill=value)) +
  geom tile() +
  geom text(aes(Var2, Var1, label = value), color = "white", size = 4) +
  scale_fill_gradientn(colours = c("#A0C7BE", "#708090"), trans = "pseudo_log") +
 labs(x = "",
       v = "") +
 mv theme +
  theme(legend.position = "none")
```

Correlation Matrix

Correlation Matrix

Code for the variance-covariance plot:

```
library(reshape2)
df %>%
  select(wage lhr, # select what variables to keep
         male.
         age,
         educ,
         tenure) %>%
  cor() %>% # This is the line that computes the matrix
 round(digits = 2) %>% # round the numbers
 melt() %>% # the rest of the code is for the plot
  ggplot(aes(x=Var1, y=Var2, fill=value)) +
  geom tile() +
  geom text(aes(Var2, Var1, label = value), color = "white", size = 4) +
 scale_fill_gradientn(colours = c("#A0C7BE", "#708090")) +
 labs(x = "")
      v = "",
       fill = "Correlation") +
 mv theme +
  theme(legend.position = "right")
```

Graph the Data: Log Wage Distribution


```
df %>%
  ggplot(aes(x = wage_lhr)) +
  geom_histogram(bins = 100, color= "slategray", fill = "slategrey", alpha=0.6) +
  xlim(-1, 3) +
  labs(x = "Log of hourly real wage") +
  my_theme
```


Case Study: The Gender Wage Gap has been Decreasing Over Time?


```
df %>%
  ggplot(aes(x = exp(wage_lhr) )) + #We can the variable directly
  geom_histogram(bins = 100, color= "slategray", fill = "slategrey", alpha=0.5) +
  xlim(0, 7) +
  labs(x = "Hourly real wage") +
  my_theme
```


Case Study: The Gender Wage Gap has been Decreasing Over Time?

Men and Women Comparison


```
Code for the previous plot:
```

```
df %>%
  mutate(male = as.character(male)) %>%
  ggplot(aes(x=wage lhr,
             color= male.
             fill= male)) +
  geom_histogram(aes(y=..density..),
                 alpha=0.5.
                 position="identity",
                 bins = 50) +
  geom_density(size = 1, alpha=0) +
  xlim(-1, 3) +
  scale_color_manual(values = c("#b34745", "#708090"),
                     labels = c("Women","Men"),
                     name = "") +
  scale fill manual(values = c("#b34745", "#708090"),
                     labels = c("Women","Men"),
                     name = "") +
  labs(x = "Log of hourly real wage") +
  my theme
```


View(df_wage_gap) #open this dataset

Plot the Gender Wage Gap

Code for the previous plot:

Miguel Salema

Section 2

Using Linear Models

Case Study: The Gender Wage Gap has been Decreasing Over Time?

Estimate the relationship between wages and education with a linear model:

$$wage_i = \beta_0 + \beta_1 male_i + \varepsilon_i$$

In a univariate regression, we can estimate β_1 with a simple fraction:

$$\hat{\beta}_1 = \frac{cov(wage, male)}{var(male)}$$

Calculate $\hat{\beta}_1$ in R: beta1 <- cov(df\$wage_lhr, df\$male)/var(df\$male) beta1 ## [1] 0.2327335

Notice that $\hat{\beta}_1$ is not the same as a correlation, but it's similar: cor(df\$wage_lhr, df\$male) ## [1] 0.1971039

To estimate β_0 in a univariate regression:

$$\hat{\beta}_0 = w \bar{a} g e - \hat{\beta}_1 m \bar{a} l e$$

```
Estimate \hat{\beta}_0 in R:
mean(df$wage_lhr)- beta1 * mean(df$male)
## [1] 0.2934248
```


There is no need to compute the coefficients by hand. We can use the lm function:

```
m1 <- lm(wage_lhr ~ male, data = df)
m1
##
## Call:
## lm(formula = wage_lhr ~ male, data = df)
##
## Coefficients:
## (Intercept) male
## 0.2934 0.2327</pre>
```

Notice the values are the same as the ones we calculated before.

If we estimate a regression without independent variables we calculate the average of the dependent variable.

wage_i = $\beta_0 + \varepsilon_i$

Run a model without independent variables:

```
m2 <- lm(wage_lhr ~ 1 , data=df)
m2
##
## Call:
## lm(formula = wage_lhr ~ 1, data = df)
##
## Coefficients:
## (Intercept)
##
0.4264</pre>
```

It's the same as computing the mean:

```
mean(df$wage_lhr)
## [1] 0.4264361
```


Compare with a model that has gender for independent variable: stargazer(m1, m2)

	Dependent variable: wage_lhr				
	(1)	(2)			
male	0.233***				
	(0.001)				
Constant	0.293***	0.426***			
	(0.0004)	(0.0003)			
Observations	4,742,129	4,742,129			
R ²	0.039	0.000			
Adjusted R ²	0.039	0.000			
Residual Std. Error	0.573 (df = 4742127)	0.584 (df = 4742128)			
F Statistic	$191,678.100^{***}$ (df = 1; 4742127)	. ,			
Note:	*p<0.1	; **p<0.05; ***p<0.01			

Section 3

Case Study: The Gender Wage Gap has been Decreasing Over Time?

Miguel Salema

Case Study: The Gender Wage Gap has been Decreasing Over Time?

Using data from Quadros de Pessoal.

Table 1: Gender wage gap: 5 regressions/models

	(1)	(2)	(3)	(4)	(5)
Male	0.233	0.278	0.216	0.191	0.117
Control variables:					
Age		Yes	Yes	Yes	Yes
Age2		Yes	Yes	Yes	Yes
Tenure		Yes	Yes	Yes	Yes
Tenure2		Yes	Yes	Yes	Yes
Education dummies		Yes	Yes	Yes	Yes
Year dummies		Yes	Yes	Yes	Yes
Industry dummies			Yes		
Firm dummies				Yes	Yes
Job title dummies					Yes
No. observations	4,742,129	4,742,129	4,742,129	4,742,129	4,550,039
Adjusted R2	0.0388	0.4551	0.5163	0.6916	0.7667

Going Beyond BRM

	(1)	(2)	(3)	(4)	(5)
1991*Male	0.319	0.265	0.190	0.161	0.093
1992*Male	0.327	0.273	0.198	0.171	0.100
1993*Male	0.317	0.269	0.196	0.166	0.092
1994*Male	0.308	0.269	0.201	0.173	0.100
1995*Male	0.308	0.274	0.207	0.183	0.111
1996*Male	0.309	0.280	0.211	0.183	0.111
1997*Male	0.297	0.283	0.214	0.188	0.118
1998*Male	0.299	0.287	0.222	0.195	0.124
1999*Male	0.293	0.285	0.222	0.201	0.132
2000*Male	0.276	0.281	0.219	0.199	0.131
2002*Male	0.250	0.280	0.222	0.203	0.134
2003*Male	0.248	0.282	0.225	0.206	0.135
2004*Male	0.248	0.286	0.227	0.205	0.123
2005*Male	0.235	0.280	0.222	0.202	0.124
2006*Male	0.235	0.285	0.225	0.204	0.129
2007*Male	0.234	0.290	0.233	0.209	0.132
2008*Male	0.229	0.291	0.233	0.208	0.129
2009*Male	0.221	0.283	0.225	0.200	0.122
2010*Male	0.204	0.272	0.212	0.187	0.110
2011*Male	0.205	0.271	0.212	0.185	0.109
2012*Male	0.205	0.267	0.207	0.180	0.105
2013*Male	0.211	0.280	0.218	0.190	0.116
2014*Male	0.207	0.282	0.220	0.189	0.116
2015*Male	0.200	0.279	0.216	0.186	0.115
2016*Male	0.182	0.266	0.206	0.178	0.110
2017*Male	0.173	0.263	0.203	0.177	0.110
Control variables:					
Age		Yes	Yes	Yes	Yes
Age2		Yes	Yes	Yes	Yes
Tenure		Yes	Yes	Yes	Yes
Tenure2		Yes	Yes	Yes	Yes
Education dummies		Yes	Yes	Yes	Yes
Industry dummies			Yes		
Firm dummies				Yes	Yes
Job title dummies					Yes
No. observations	4,742,129	4,742,129	4,742,129	4,742,129	4,550,039
Adjusted R2	0.0388	0.4551	0.5163	0.6916	0.7667

Case Study: The Gender Wage Gap has been Decreasing Over Time?

In the $1^{\rm st}$ class we plotted the average differences of hourly wage between men and women:

What happens if we add the coefficients from the model 1 in page 31 to the graph? We can see that the regression coefficients match exactly the mean difference.


```
Code for the previous plot:
# model 1 of page 31:
m raw <- lm(wage lhr ~ as.factor(year) + as.factor(year):male - 1,</pre>
            data = df)
# -1 will remove the intercept
df_wage_gap %>%
  pivot longer(!year, names to = "series", values to = "wage") %>%
  # add the regression coeffs to the data
  bind_rows(tibble(wage = m_raw$coefficients[27:52],
                   year = unique(df$year) %>% sort(),
                   series = "reg diff")) %>%
  ggplot(aes(x=year, y=wage, color=series)) +
  geom line(size = 1.5) +
  scale_color_manual(values = c("#b34745", "#de8f44", "#A0C7BE", "#708090"),
                     labels=c("Wage Gap", "Wage Gap (reg)", "Women", "Men"),
                     name="") +
  labs(y = "Log of real hourly wage",
       x = "Year") +
  my_theme
```


What happens if we add the coefficients from the model 1, 2 and 5 in page 31 to the graph? We can see that the regression coefficients almost did not change over time for model 2 and 5.


```
code for the previous plot:
```

```
# model 1:
m_raw <- lm(wage_lhr ~ as.factor(year) + as.factor(year):male - 1,</pre>
            data = df)
# -1 will remove the intercept
# model 2:
m_inter <- lm(wage_lhr ~ as.factor(year) + as.factor(year):male - 1 + age + I(age<sup>2</sup>
              data = df
# library for the high dimentional fixed effects
library(fixest)
m_full <- feols(wage_lhr ~ as.factor(year):male + age + I(age^2) + tenure + I(tenur
              data = df
# identify the coefficients of interest in each object
select_raw <- names(m_raw$coefficients) %>% str_detect("male")
select_inter <- names(m_inter$coefficients) %>% str_detect("male")
select full <- names(m full$coefficients) %>% str detect("male")
```

```
# these select vectors are logical (TRUE/FALSE), indicating whether the coefficient
```

Compare the models


```
# plot the selected coefficients. Build a tidy dataset
df_plot <- tibble(</pre>
  # keep only the selected coefficients
  coeffs = c(m_raw$coefficients[select_raw],
             m_inter$coefficients[select_inter],
             m full$coefficients[select full]),
  # repeat the year sequence 3 times
  year = unique(df$year) %>% sort() %>% rep(times = 3),
  # each serie has the size of the number of years
  series = c("raw", "inter", "full") %>%
    rep(each = n distinct(df$year)) %>%
    fct inorder()
df_plot %>%
  ggplot(aes(x=year, y=coeffs, color=series)) +
  geom line(linewidth = 1.5) +
  scale_color_manual(values = c("slategrey", "#de8f44", "#b34745"),
                     labels=c("Raw Wage Gap", "+ Controls", "+Fixed Effects"),
                     name="") +
  labs(y = "Gender wage gap in log real hourly wages",
       x = "Year") +
  my_theme
```


- Employers' discrimination?
- Discrimination or prejudice? (Flabbi 2010)
- Greedy jobs? (Goldin 2021)
- Omitted variable bias?

- Flabbi, Luca. 2010. "Gender Discrimination Estimation in a Search Model with Matching and Bargaining." *International Economic Review* 51 (3): 745–83.
- Goldin, Claudia. 2021. Career and Family: Women's Century-Long Journey Toward Equity. Princeton University Press.